Computer Science & engineering
ES-301
(Energy & Environmental Engineering)
CS-302
(Discrete Structure)
CS-303
(Data Structure)
CS-304
(Digital Systems)
CS-305
(OOPM)
Syllabus
- Introduction to energy systems and resources; Introduction to Energy, sustainability & the environment; Overview of energy systems, sources, transformations, efficiency, and storage; Fossil fuels (coal, oil, oil-bearing shale and sands, coal gasification) - past, present & future, Remedies & alternatives for fossil fuels - biomass, wind, solar, nuclear, wave, tidal and hydrogen; Sustainability and environmental trade-offs of different energy systems; possibilities for energy storage or regeneration (Ex. Pumped storage hydro power projects, superconductor-based energy storages, high efficiency batteries)
- Concept of an ecosystem; Structure and function of an ecosystem; Producers, consumers and decomposers; Energy flow in the ecosystem; Ecological succession; Food chains, food webs and ecological pyramids; Introduction, types, characteristic features, structure and function of the following ecosystem (a.)Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)
- Introduction – Definition: genetic, species and ecosystem diversity; Biogeographical classification of India; Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values; Biodiversity at global, National and local levels; India as a mega-diversity nation; Hot-sports of biodiversity; Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; Endangered and endemic species of India; Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.
- Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards; Solid waste Management: Causes, effects and control measures of urban and industrial wastes; Role of an individual in prevention of pollution; Pollution case studies; Disaster management: floods, earthquake, cyclone and landslides
- From Unsustainable to Sustainable development; Urban problems related to energy; Water conservation, rain water harvesting, watershed management; Resettlement and rehabilitation of people; its problems and concerns. Case Studies Environmental ethics: Issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies Wasteland reclamation; Consumerism and waste products; Environment Protection Act; Air (Prevention and Control of Pollution) Act; Water (Prevention and control of Pollution) Act; Wildlife Protection Act; Forest Conservation Act; Issues involved in enforcement of environmental legislation; Public awareness.
- • Visit to a local area to document environmental assetsriver/forest/grassland/hill/mountain • Visit to a local polluted site-Urban/Rural/Industrial/Agricultural • Study of common plants, insects, birds. • Study of simple ecosystems-pond, river, hill slopes, etc.
Syllabus
- Set Theory, Relation, Function, Theorem Proving Techniques : Set Theory: Definition of sets, countable and uncountable sets, Venn Diagrams, proofs of some general identities on sets Relation: Definition, types of relation, composition of relations, Pictorial representation of relation, Equivalence relation, Partial ordering relation, Job-Scheduling problem Function: Definition, type of functions, one to one, into and onto function, inverse function, composition of functions, recursively defined functions, pigeonhole principle. Theorem proving Techniques: Mathematical induction, Proof by contradiction.
- Algebraic Structures: Definition, Properties, types: Semi Groups, Monoid, Groups, Abelian group, properties of groups, Subgroup, cyclic groups, Cosets, factor group, Permutation groups, Normal subgroup, Homomorphism and isomorphism of Groups, example and standard results, Rings and Fields: definition and standard results.
- Propositional Logic: Proposition, First order logic, Basic logical operation, truth tables, tautologies, Contradictions, Algebra of Proposition, logical implications, logical equivalence, predicates, Normal Forms, Universal and existential quantifiers. Introduction to finite state machine Finite state machines as models of physical system equivalence machines, Finite state machines as language recognizers
- Graph Theory: Introduction and basic terminology of graphs, Planer graphs, Multigraphs and weighted graphs, Isomorphic graphs, Paths, Cycles and connectivity, Shortest path in weighted graph, Introduction to Eulerian paths and circuits, Hamiltonian paths and circuits, Graph coloring, chromatic number, Isomorphism and Homomorphism of graphs
- Posets, Hasse Diagram and Lattices: Introduction, ordered set, Hasse diagram of partially, ordered set, isomorphic ordered set, well ordered set, properties of Lattices, bounded and complemented lattices.
- Combinatorics: Introduction, Permutation and combination, Binomial Theorem, Multimonial Coefficients Recurrence Relation and Generating Function: Introduction to Recurrence Relation and Recursive algorithms , Linear recurrence relations with constant coefficients, Homogeneous solutions, Particular solutions, Total solutions , Generating functions , Solution by method of generating functions
Syllabus
- Review of C programming language.Introduction to Data Structure: Concepts of Data and Information, Classification of Data structures, Abstract Data Types, Implementation aspects: Memory representation. Data structures operations and its cost estimation. Introduction to linear data structures- Arrays, Linked List: Representation of linked list in memory, different implementation of linked list. Circular linked list, doubly linked list, etc. Application of linked list: polynomial manipulation using linked list, etc.
- Stacks: Stacks as ADT, Different implementation of stack, multiple stacks. Application of Stack: Conversion of infix to postfix notation using stack, evaluation of postfix expression, Recursion. Queues: Queues as ADT, Different implementation of queue, Circular queue, Concept of Dqueue and Priority Queue, Queue simulation, Application of queues.
- Tree: Definitions - Height, depth, order, degree etc. Binary Search Tree - Operations, Traversal, Search. AVL Tree, Heap, Applications and comparison of various types of tree; Introduction to forest, multi-way Tree, B tree, B+ tree, B* tree and red-black tree
- Graphs: Introduction, Classification of graph: Directed and Undirected graphs, etc, Representation, Graph Traversal: Depth First Search (DFS), Breadth First Search (BFS), Graph algorithm: Minimum Spanning Tree (MST)- Kruskal, Prim’s algorithms. Dijkstra’s shortest path algorithm; Comparison between different graph algorithms. Application of graphs
- Sorting: Introduction, Sort methods like: Bubble Sort, Quick sort. Selection sort, Heap sort, Insertion sort, Shell sort, Merge sort and Radix sort; comparison of various sorting techniques. Searching: Basic Search Techniques: Sequential search, Binary search, Comparison of search methods. Hashing & Indexing. Case Study: Application of various data structures in operating system, DBMS etc
Syllabus
- Unit 1: Review of number systems and number base conversions. Binary codes, Boolean algebra, Boolean functions, Logic gates. Simplification of Boolean functions, Karnaugh map methods, SOP-POS simplification, NAND-NOR implementation.
- Unit 2: Combinational Logic: Half adder, Half subtractor, Full adder, Full subtractor, look- ahead carry generator,BCD adder, Series and parallel addition, Multiplexer – demultiplexer, encoder- decoder, arithmetic circuits, ALU
- Unit 3 : Sequential logic: flip flops, D,T, S-R, J-K Master- Slave, racing condition, Edge & Level triggered circuits, Shift registers, Asynchronous and synchronous counters, their types and state diagrams. Semiconductor memories, Introduction to digital ICs 2716, 2732 etc. & their address decoding. Modern trends in semiconductor memories such as DRAM, FLASH RAM etc. Designing with ROM and PLA
- Unit 4 : Introduction to A/D & D/A convertors & their types, sample and hold circuits, Voltage to Frequency & Frequency to Voltage conversion. Multivibrators :Bistable, Monostable, Astable, Schmitt trigger, IC 555 & Its applications. TTL, PMOS, CMOS and NMOS logic. Interfacing between TTL to MOS.
- Unit 5 : Introduction to Digital Communication: Nyquist sampling theorem, time division multiplexing, PCM, quantization error, introduction to BPSK & BFSK modulation schemes. Shannon’s theorem for channel capacity.
Syllabus
- 1. Introduction to Object Oriented Thinking & Object Oriented Programming: Comparison with Procedural Programming, features of Object oriented paradigm– Merits and demerits of OO methodology; Object model; Elements of OOPS, IO processing
- 2. Encapsulation and Data Abstraction- Concept of Objects: State, Behavior & Identity of an object; Classes: identifying classes and candidates for Classes Attributes and Services, Access modifiers, Static members of a Class, Instances, Message passing, and Construction and destruction of Objects.
- 3. Relationships – Inheritance: purpose and its types, ‘is a’ relationship; Association, Aggregation. Concept of interfaces and Abstract classes.
- 4. Polymorphism: Introduction, Method Overriding & Overloading, static and run time Polymorphism.
- 5. Strings, Exceptional handling, Introduction of Multi-threading and Data collections. Case study like: ATM, Library management system.